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INTRODUCTION

Successful operation of orbiting space systems requires structures

which are effective and reliable in remote and inaccessible environments.

Thus, the design of quantitative nondestructive evaluation (NDE) methods

is an important part of the reliable implementation of space structures.

Ideally, NDE methods for space structures would operate automatically in

orbit, would detect any damage or abnormality in the structure, and would

provide a quantitative assessment of structural integrity.

:-n a previous report [i, transfer matrices and joint coupling matrices

are used to compute natural frequencies of vibration of a five-bay planar

lattice structure. In this report, the problem of detecting damage in the

five-bay planar lattice structure is considered. Seven different states of

damage are assumed. Each damage state corresponds to a disconnected or

partially disconnected joint in the lattice. Transfer matrices and joint

coupling matrices are used to compute natural frequencies associated with

each damage state. The natural frequencies computed for each damage state

are significantly different from the natural frequencies of the undamaged

lattice; for example, the frequencies of the first flexible mode of the

damaged lattice are 26% to 83% lower than the frequency of the first flexible

mode of the undamaged lattice.

The results presented here demonstrate that measurement of natural

frequencies is a potentially useful method for detecting damage in lattice

structures, at least, for the types of damage considered here. However, it

is also shown here that measurement of natural frequencies alone is not

sufficient, in general, to determine the location of damage within the

lattice structure. Thus, measurement of natural frequencies should be
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regarded as only a part of a complete, NDE method. After the results

obtained here are presented, some suggestions for NDE methods which may be

capable of providing more quantitative measures of structural integrity are

given.

-4-

-v --



LATTICE MODEL AND DEFINITION OF DAMAGE STATES

The lattice model considered here is shown in Fig. 1. The physical

lattice structure which the lattice model of Fig. 1 represents in described

in [1]. The members of the lattice of Fig. 1 are assumed to be one-dimen-

sional continua which can extend (and contract) axially and bend flexurally.

The members are modelled as classical longitudinal rods for axial motion

and as Bernoulli-Euler beams for flexural motion. It is assumed that all

motion remains in the plane of the lattice, and that all motion is small.

The joints in the lattice model are assumed to be rigid and massless, and

to have no spatial extent. The joints are labeled 1 through 12 as shown

in Fig. 1.

The damage states considered here are defined as follows. In damage

state 1, joint 1 of the lattice is disconnected, as shown in Fig. 2. In

damage state 2, joint 3 is completely disconnected, as shown in Fig. 3.

In damage state 3, joint 3 is partially disconnected, as shown in Fig. 4.

In damage state 4, joint 3 is partially disconnected, as shown in Fig. 5.

In damage state 5, joint 5 is completely disconnected, as shown in Fig. 3.

In damage state 6, joint 5 is partially disconnected, as shown in Fig. 4.

In damage state 7, joint 5 is partially disconnected, as shown in Fig. 5.

In each damage state, it is assumed that the lattice structure remains

unaltered except for the particular disconnected joint listed above.
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NATURAL FREQUENCIES OF DAMAGED LATTICE

The joint coupling matrices for the disconnected and partially discon-

nected joints in Figs. 2 through 5 are derived in Appendix A. By using

these joint coupling matrices in the computer program given in [i], natural

frequencies of vibration of the damaged lattice structure may be obtained.

The material and geometric constants used in the computation of the natural

frequencies are given in [1].

The first twenty-five nonzero natural frequencies of the undamaged

lattice and the first twenty-five nonzero natural frequencies associated

with each of the seven damage states are given in Tables 1 through 8. The

natural frequencies of the undamaged lattice and the natural frequencies

associated with damage states 1 and 2 are plotted in Fig. 6. The natural

frequencies of the undamaged lattice and the natural frequencies associated

with damage states 3, 4 and 5 are plotted in Fig. 7. The natural frequencies

of the undamaged lattice and the natural frequencies associated with damage

states 6 and 7 are plotted in Fig. 8.
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DISCUSSION AND CONCLUDING COMMENTS

The results presented in Tables 1 through 8 show that the natural

frequencies associated with each damage state are significantly different

from the natural frequencies of the undamaged lattice. For example, the

frequencies of the first flexible mode of the damaged lattice are 26% to

83% lower than the frequency of the first flexible mode of the undamaged

lattice. Thus, measurement of natural frequencies is a potentially useful

method of detecting damage, at least, for the types of damage considered

here. Measurement of natural frequencies may be accomplished automatically

O by detecting peaks in a transfer function, as is commonly done in experi-

mental modal analysis [2].

The large change in natural frequencies due to the disconnected joints

0 considered here reflects the fact that damage or failure of a single joint

in a lattice can cause a large change in the overall stiffness of the

structure. This sensitivity of lattice structures to failure of a single

*6 joint underscores the need for effective NDE methods.

Many damage states are possible, including combinations of the damage

states considered here. Experience with a particular structure may show

that a certain set of natural frequencies is likely to be caused by a

certain damage state. However, it is not possible, in general, to uniquely

determine the damage state from a given set of natural frequencies. For

example, the set of natural frequencies which is obtained when joint 1 of

the lattice considered here is disconnected, would also be obtained if joint

2, 11 or 12 were disconnected. Also, as illustrated by Fig. 8, the natural

frequencies associated with two damage states may be nearly identical over

a particular frequency range, making an experimental distinction between

-7-
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the two states difficult. The set of natural frequencies, which is deter-

mined by the overall state of the lattice, cannot, in general, give infor-

mation about the state of a particular section of the lattice. Thus,

measurement of natural frequencies alone cannot give a totally quantitative

assessment of structural integrity, since such an assessment requires, in

general, the location of damage within the lattice.

Determination of damage location in lattice structures may be possible

by analyzing propagating disturbances or waves. If a disturbance is intro-

duced at a given point in a lattice structure and monitored at a nearby

point, the initial portion of the detected disturbance at the monitored

point depends only on the local state of the lattice. Extraction of infor-

mation from detected disturbances requires an understanding of wave propa-

gation in lattice structures. Analysis of wave propagation in lattice

structures is discussed in [3] and [4]. Detection and analysis of wave

propagation is more difficult than measurement of natural frequencies, but

such analysis may lead to NDE methods capable of providing more complete

assessments of structural integrity.
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* TABLE 1 First twenty-five nonzero natural frequencies

of undamaged lattice.

Flexible Mode Frequency
* Number (rad/sec)

1 308.5

2 433.5

* 3 606.5

4 726.5

5 932.5

6 1438.5

O 7 1535.5

8 1766.5

9 2071.5

10 2115.5

11 2307.5

12 2479.5

13 2887.5

14 2979.5

15 3242.5

16 3249.5

17 3254.5

18 3257.5

19 3258.5

20 3552.5

21 4120.5

22 5923.5

* 23 6094.5

24 6704.5

25 6894.5
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TABLE 2 First twenty-five nonzero natural frequencies

associated with damage state 1.

Flexible Mode Frequency
Number (rad/sec)

1 162.5

2 319.5

3 407.5

4 442.5

5 574.5

6 714.5

7 919.5

8 1465.5

9 1642.5

10 1913.5

11 2081.5

12 2199.5

13 2362.5

14 2587.5

15 2851.5

16 3080.5

17 3243.5

18 3251.5

19 3256.5

20 3258.5

21 3311.5

22 3626.5

23 4164.5

24 5960.5

25 6291.5

-ei
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TABLE 3 First twenty-five nonzero natural frequencies

associated with damage state 2.

Flexible Mode Frequency

Number (rad/sec)

1 68.5

2 138.5

3 353.5

4 383.5

5 415.5

6 468.5

7 621.5

8 664.5

9 895.5

10 1477.5

11 1713.5

12 1862.5

13 2125.5

14 2167.5

15 2417.5

16 2687.5

17 2862.5

18 3129.5

19 3245.5

20 3254.5

21 3258.5

22 3271.5

23 3353.5

24 3522.5

25 4097.5
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TABLE 4 First twenty-five nonzero natural frequencies
associated with damage state 3.

Flexible Mode Frequency
Number (rad/sec)

1 207.5

2 412.5

3 417.5

4 482.5

5 571.5

6 752.5

7 952.5

8 1456.5

9 1594.5

10 1847.5

11 2028.5

12 2169.5

13 2378.5

14 2442.5

15 2905.5

16 2954.5

17 3228.5

18 3245.5

19 3254.5

20 3258.5

21 3493.5

22 3874.5

23 4284.5

24 5934.5

25 6176.5
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TABLE 5 First twenty-five nonzero natural frequencies
associated with damage state 4.

Flexible Mode Frequency
Number (rad/sec)

1 74.5

2 319.5

3 383.5

0 4 469.5

5 629.5

6 730.5

7 895.5

8 1464.5

9 1512.5

10 1758.5

11 2095.5

12 2159.5

13 2471.5

14 2621.5

15 2729.5

16 2929.5

17 3245.5

18 3254.15

19 3254.25

20 3258.5

21 3342.5

22 3522.5

23 4096.5

24 5981.5

25 6139.5

- 14 -
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TABLE 6 First twenty-five nonzero natural frequencies
associated with damage state 5.

Flexible Mode Frequency
Number (rad/sec)

1 51.5

2 148.5

3 400.5

4 403.5

5 432.5

6 499.5

7 580.5

8 750.5

9 856.5

10 1504.5

11 1575.5

12 1874.5

13 2109.5

14 2358.5

15 2415.5

16 2567.5

17 2854.5

18 3097.5

19 3248.5

20 3253.5

21 3256.5

22 3258.5

23 3398.5

24 3687.5

25 3985.5
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TABLE 7 First twenty-five nonzero natural frequencies
associated with damage state 6.

Flexible Mode Frequency
Number (rad/sec)

1 288.5

2 331.5

3 464.5

4 514.5

5 615.5

6 720.5

7 964.5

8 1460.5

9 1569.5

10 1841.5

11 1997.5

12 2207.5

13 2381.5

14 2474.5

15 2871.5

16 2951.5

17 3191.5

18 3249.5

19 3254.5

20 3257.5

21 3565.5

22 3775.5

23 4361.5

24 5940.5

25 6130.5

0m
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TABLE 8 First twenty-five nonzero natural frequencies
associated with damage state 7.

Flexible Mode Frequency
Number (rad/sec)

1 62.5

2 299.5

3 427.5

4 488.5

5 608.5

6 753.5

7 861.5

8 1466.5

9 1520.5

10 1821.5

11 1966.5

12 2206.5

13 2404.5

14 2537.5

15 2817.5

16 3022.5

17 3198.5

18 3249.15

19 3249.35

20 3257.25

21 3257.35

22 3663.5

23 4012.5

24 5981.5

25 6110.5
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Fig. 2 Disconnected joint associated with damage state 1,
joint 1.
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Fig. 3 Disconnected joint associated with damage states 2 and 5,

joint 3 and joint 5, respectively.
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Fig. 4 Disconnected joint associated with damage states 3 and 6,

joint 3 and joint 5, respectively.
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Fig. 6 Natural frequencies of undamaged lattice and natural
frequencies associated with damage states 1 and 2.
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Fig. 7 Natural frequencies of undamaged lattice and natural
c frequencies associated with damage states 3, 4 and 5.
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1200 o Damage State 6

a Damage State 7

1000

600

U-

400-S

200

01
0 5 10 15 20 25

Flexible Mode Number

Fig. 8 Natural frequencies of undamaged lattice and natural frequencies
associated with damage states 6 and 7.

-25-

(-C



APPENDIX A: JOINT COUPLING MATRICES FOR DISCONNECTED AND PARTIALLY

DISCONNECTED JOINTS

In this appendix, joint coupling matrices for disconnected and partially

disconnected two-dimensional L and T-joints are derived. It is assumed that

the state vectors of the one-dimensional members which meet at the joints

are of the form

u(x,t)

v(x,t)

P(X't)
S(xt)= (Al)

M(xt)

V(xt)

F(x,t)

where u(x,t) is the longitudinal displacement of the member, v(x,t) is the

transverse displacement of the member, i(x,t) is the rotation of the member,

M(x,t) is the bending moment in the member, V(x,t) is the shear force in

the member, F(x,t) is the axial force in the member, x is a spatial coordi-

nate which extends along the length of the member and t is time. The

components of the state vector and the sign convention adopted here for the

components of the state vector are shown in Fig. Al. Throughout this

appendix, an overbar will denote a Fourier transform.

Disconnected L-joint

A disconnected L-joint is shown in Fig. A2(a). The components of the

state vectors of the members which meet at the joint are shown in Fig. A2(b).

26-
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Since the joint is disconnected, it is assumed that points I and 2 are free

ends. Therefore,

M M 0 (A2)

V1 - 0 (A3)

F. = 0 (A4)

M 2 = 0 (AS)

V2 = 0 (A6)

F2 = 0 (A7)

After taking a Fourier transform, eqns. (A2) through (A7) can be written as

u 1

vi

iI

0 0 0 1 0 0 0 0 0 0 00 0 1 0

0 0 0 0 1 0 0 0 0 0 00 V1 0

= (A8)

0 0 0 0 0 0 0 0 0 1 00 U 2  0

0 0 0 0 0 0 0 0 0 0 1 0 v 2  0

0 0 0 0 0 0 0 0 0 0 0 1 0

V
2

v
2

-27-



The 6 x 12 matrix in eqn. (A8) is the joint coupling matrix of the discon-

nected L-Joint of Fig. A2(a), although the matrix does not, in fact, couple

the two members at all.

Disconnected T-Joint

A disconnected T-Joint is shown in Fig. A3(a). The components of the

state vectors of the members which meet at the joint are shown in Fig. A3(b).

Since the joint is disconnected, it is assumed that points 1, 2 and 3 are

free ends. Therefore,

M - 0 (A9)

V1  o (AlO)

F -0 (All)

M2 -0 (A12)

V-2  0 (A13)

F2 -0 (A14)

M3 -0 (A15)

V-3  0 (A16)

F3  0 (AI7)

After taking a Fourier transform, eqns. (A9) through (All) can be written as

- 28 -
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0

The 9 x 18 matrix in eqn. (A18) is the joint coupling matrix of the discon-

nected T-joint of Fig. A3(a).

Partially Disconnected T-joint, Case 1

A partially disconnected T-joint is shown in Fig. A4(a). The components

of the state vectors of the members which meet at the joint are shown in

Fig. A4(b). In Fig. A4(a), it is assumed that point 3 is a free end, and

that points 1 and 2 are connected by a rigid massless joint with no spatial

extent. Since point 3 is a free end,

0i

M3 = 0 (A19)

V3 = 0 (A20)

F3 = 0 (A21)

The equilibrium requirements for the joint connecting points 1 and 2 are

0r
M1 - M 2 = 0 (A22)

V1 - V2 - 0 (A23)

F - F2 = 0 (A24)

The compatibility requirements for the joint connecting points 1 and 2 are

u1 - u 2 = 0 (A25)

v I - v 2 = 0 (A26)

ei - '2 - 0 (A27)

After taking a Fourier transform, eqns. (A19) through (A27) can be written as

- 30
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The 9 x 18 matrix in eqn. (A28) is the joint coupling matrix for the

partially disconnected T-joint of Fig. A4(a).

Partially Disconnected T-joint, Case 2

A partially disconnected T-Joint is shown in Fig. A5(a). The components

of the state vectors of the members which meet at the joint are shown in

Fig. A5(b). In Fig. A5(a), it is assumed that point 2 is a free end, and

that points 1 and 3 are connected by a rigid massless joint with no spatial

extent. Since point 2 is a free end,

M42 = 0 (A29)

V2 = 0 (A30)

F2 = 0 (A31)

The equilibrium requirements for the joint connecting points 1 and 3 are

M1 - M3 = 0 (A32)

V1 - F3 - 0 (A33)

F1 + V3 = 0 (A34)

The compatibility requirements for the joint connecting points 1 and 3 are

uI - v3 = 0 (A35)

v1 + u3 - 0 (A36)

1 - 3 0 (A37)

After taking a Fourier transform, eqns. (A29) through (A37) can be written as
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The 9 x 18 matrix in eqn. (A38) is the joint coupling matrix for the

partially disconnected T-joint of Fig. A5(a).
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0

Fig. Al Lattice member, showing components of state vectors and

sign convention.
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Fig. A2 Disconnected L-joint.
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Fig. A3 Disconnected T-joint.
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Fig. A5 Partially disconnected T-joint.
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